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Multiscale model of miscible polymer blends in porous media: From flow fields
to concentration fluctuations

Gavin A. Buxton and Nigel Clarke
Department of Chemistry, University of Durham, Durham, DH1 3LE, United Kingdom
(Received 26 May 2006; published 18 October 2006)

We have developed a multiscale approach for simulating the concentration fluctuations in a miscible blend
subject to complex flow dynamics. We first simulate the hydrodynamics of a fluid as it flows through porous
media. In particular, we monitor the velocity gradients as a function of time for a fluid “particle” as it follows
a tortuous path through the system. Next, we evolve the structure factor of the spatial concentration fluctuations
subject to this flow environment. The velocity gradients experienced by this fluid particle can result in elon-
gation and rotation of the concentration fluctuations. In this manner, we couple the macroscopic flow fields in
porous media with the microscopic concentration fluctuations in the polymer blend. We find a close correlation
between the tortuous pathways, the velocity gradients in the fluid, and the perturbance of the structure factor
from it quiescent state. Furthermore, we find that the concentrations tend to elongate towards the flow direction

or at an acute angle with the flow direction.
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I. INTRODUCTION

Most commercial plastics are formed from the blending of
two or more different polymer species [1]. In this manner
materials scientists can create polymer blends which exhibit
desirable characteristics associated with each of the indi-
vidual polymeric constituents. For example, ductile and
brittle polymers are often blended together to form a com-
posite which possesses both acceptable strength and tough-
ness [1,2]. The properties of the final product can depend
heavily upon the processing history and, therefore, it is ben-
eficial to understand both the thermodynamics and dynamics
of molten polymer blends during industrial processing. It
should be noted, however, that most commercial polymers
are immiscible. The following analysis, therefore, is appli-
cable to a minority of miscible polymer blends and polymer
blends within the one-phase region.

It is well known that blends processed under simple shear
often exhibit large shifts in the phase-separation temperature
and, most commonly, shear-induced mixing [3,4]. The ef-
fects of shear on the thermodynamics of a polymer blend in
the one-phase region can be probed by considering the con-
centration fluctuations [5]. In particular, a measure of the
effective y parameter can be obtained from the spatial scale
of the concentration fluctuations which arise due to thermal
noise in the system [6]. What is less well known is how flow
patterns, more complicated than simple shear flow, can affect
the spatial fluctuations in polymer concentrations and, hence,
the thermodynamics of the blend. It is the purpose of this
study to investigate concentration fluctuations in a miscible
polymer blend as it flows through a tortuous porous media.

Flow in porous media is of technological importance to a
wide range of scientific disciplines, including petroleum en-
gineering, geophysics and biology [7]. However, there is also
a strong academic motivation for studying fluid flow through
porous media. Flow in this geometry provides an excellent
opportunity for studying the behavior of fluids subject to
complex flow dynamics. The complex microstructure of po-
rous media, and the converging and diverging fluid channels,
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can enable us to probe the effects of extensional and shear
flow on the thermodynamics of polymer blends.

We present a multiscale approach for capturing the dy-
namics of concentration fluctuations in a polymer blend as it
flows through porous media. We first simulate the hydrody-
namics of the fluid flow through the porous media and cap-
ture the flow profile. Given this flow profile we can follow a
fluid “element” as it travels along a streamline through the
porous media. We use the time-dependent environment that
this fluid element experiences as the input to a model of the
evolution of the concentration fluctuations in the polymer
blend. In other words, as the fluid element traverses the po-
rous media it experiences variations in extensional and shear
flow which elongate and rotate the concentration fluctua-
tions. By combining a model of the macroscopic hydrody-
namics with a model of the nanoscale concentration fluctua-
tions we can capture the multiscale physics of this system
and correlate the complexity of the flow field to the thermo-
dynamics of the polymer blend.

In the following section we detail the methodology for
our multiscale model and describe both the lattice Boltzmann
(LB) model used to capture the flow profiles and the Cahn-
Hilliard model used to capture the evolution of the concen-
tration fluctuations. The third section presents results and
discussions, while we summarize our study and draw rel-
evant conclusions in the final section.

II. METHODOLOGY
A. Lattice Boltzmann model

In this study we assume that the polymer blend can be
adequately described as a simple Newtonian fluid under the
limited hydrodynamic conditions considered here. In other
words, to ensure that the flow field is Newtonian we assume
a relatively small relaxation time of 0.001 for the polymer
fluid and limit the velocity field (and, hence, shear rates) to
small values. This assumption is unlikely to be valid for most
commercial polymer blends subject to industrial processing.
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However, we believe the results presented here are qualita-
tively comparable to systems undergoing non-Newtonian
flow. We assume that the fluid can be described as a single
fluid phase because the concentration fluctuations in the mis-
cible polymer blend are sufficiently small. In the current
study we use the lattice Boltzmann method [8] to solve the
hydrodynamics of these systems. The flow fields could also
be calculated using any Navier-Stokes solver [9,10]; how-
ever, the LB method is well suited for incorporating complex
boundaries [11-14].

It should be noted that the simulation of porous media
using the LB method can result in regions where the flow
field is not accurately captured. That is, in regions where the
spacing between the solid inclusions is small the flow field is
subject to finite-size effects. However, the flow in such re-
gions is small and the majority of the fluid can circumvent
these regions if the porosity is high enough. We consider
porosity values ranging from 0.5 to 0.85 in the current simu-
lations.

The LB model consists of particle distribution functions
which describe, in an averaged sense, mesoscopic fluid “par-
ticles” at discrete locations in space traveling with discrete
velocities in given directions (i.e., towards nearest and next-
nearest neighbors). In other words, while the particle distri-
bution is both discretized in space, velocity, and time, the
distribution function itself is continuous.

The LB particle distribution function is evolved using the
following equation:

fi(r + eiAt7t + Al‘) =ﬂ(r’t) =fi(r7t) + Qi[f(r5t)]’ (1)

where f;(r,7) is the density of fluid particles at position r,
time ¢, and with a velocity e; [15] and f is a vectorial repre-
sentation of the 19 lattice populations, f;(r,z). The system
evolves through both the propagation and subsequent colli-
sion of fluid particles. In particular, fluid particles are
streamed from each lattice site to neighboring lattice sites,
and as the fluid particles reach their destination site they
collide. This is illustrated in the above equation through the
inclusion of the post-collision term ﬁ (r,1). The collision op-
erator ([ f(r,7)] relaxes the stresses toward local equilibrium
and, essentially, accounts for instantaneous collisions be-
tween fluid particles at the lattice nodes [16].

Given that fluid particles propagate from one lattice site to
the next in a given time step, the velocities in the system are
discretized. In the simulations presented here the lattice spac-
ings Ax and time step At are both assumed to be unity. There
are 19 fluid velocities in the three-dimensional model used
here (referred to as D3Q19) which correspond to a rest ve-
locity (e=[000]) and velocities in the nearest-(e={100}) and
next-nearest-neighbor (e={110}) directions.

The velocity moments of the particle distribution function
are the hydrodynamic quantities, mass density p, momentum
density j, and the momentum flux II. These are given by
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H = E ‘fl‘el’ei, (2)

where v is the fluid velocity.

For brevity, we refer the interested reader to the review
paper by Chen and Doolen [8] for an overview of the LB
method and Refs. [13-18] for a more in-depth description of
the model used in this work.

In order to induce flow, an externally applied force term is
used to mimic external pressure gradients and the post-
collision particle distribution function is modified to read

fren =0+ 0fen]+ D)
f
where F; are the applied forces [16]. The magnitude of the
velocities in the simulation can be varied by changing the
magnitude of this term and, in effect, changing the magni-
tude of the pressure gradient across the system.

The boundaries are included using a nonslip bounce-back
scheme [16]. This scheme takes a particle distribution as it
streams towards a wall node and bounces it back to the node
it came from. For stationary walls, this is described by the
propagation step f,(r,z+At)=f7(r,?), where k represents the
direction opposite to the i direction.

B. Structure factor

The dynamics of a polymer blend can be described using
the Cahn-Hilliard-Cook model, which captures the diffusive
dynamics of these systems [19-21]. This approach has been
extended to include the effects of convective fluid flow in the
system [22]. This is done through the addition of a convec-
tion term in the following dynamic equation:
a—(b—V-V¢=—MV2£+7y, 4)
ot 20
where ¢ is a conserved order parameter and represents the
concentration of one of the polymer components, v is the
fluid velocity, M is the kinetic coefficient, or mobility, F is
the free energy of the system, and # is the Cookean noise
term [22,23]. This Cookean noise term is Gaussian in nature
and accounts for thermal fluctuations. In the absence of the
convection term (given by v-V¢) the model is often used to
describe the phase separation dynamics of a binary system
and correctly predicts the 3 Lifshitz-Slyozov domain
growth law [24]. Through the inclusion of the convection
term, however, this equation has been used to simulate phase
separation under shear [22]. It has been found that domains
become highly elongated in the flow direction [22,23].

This model can be further extended to describe the dy-
namics of polymer blends by including the following Flory-
Huggins free energy of mixing:

F [ ¢ 1-¢ B 3 2
k,BT_fVNA In ¢+ N In(1 — @) + xd(1 — ¢) + k|V $|*dr,

(5)

where N, and Ny are the degrees of polymerization for the A
and B polymers, respectively, x is the enthalpic interaction

041807-2



MULTISCALE MODEL OF MISCIBLE POLYMER BLENDS...

parameter, and k represents the interfacial tension [25,26].
The first two terms in the above equation describe the en-
tropy of mixing, and the third term describes the enthalpy of
mixing, while the final term is from de Gennes [26] and
energetically penalizes concentration gradients.

The velocity included in the convection term from the
evolution equation is typically considered to be a simple
shear flow. However, in this study we consider the convec-
tion term to incorporate all flow fields and take the velocity
to be of the form

v dv du
Vo+ —X+—y+—7
ox dy oz

v v v,
v=| v+ —x+ y+—z
ox d

ly 0z ’ ©

12 v,

4 4 &UZ
Vo+—X+—y+—2
ox dy oz

where v, v,9, and v, are the background velocity fields,
which are not relevant to the local variations in composition
(note that only gradients in the velocity field will result in the
extension or rotation of polymer domains). The remaining
terms in the above expression account for the spatial gradi-
ents in the velocity field.

In the present study, we are interested in simulating the
evolution of the structure factor. This is defined as the Fou-
rier transform of the spatial correlation function of concen-
tration fluctuations. Assuming these fluctuations are small
the evolution of the structure factor can be written in the
following form:

., _, %0_5«1+%0_5c1+%3_&1]
o | ax dg,  dy dq, 9z dq,
qy_ dx dq, dy dq, Iz Iq
. %%+%ﬁq+%ﬁq]
L ox dq,  dy dq, Iz dq,
== 4Mq’[x; ~ X+ kq’1S, + 2M?, (7

where q is the scattering vector and y;, is the y parameter on
the quiescent spinodal, given by

1 1

AT ®

2Xs
In the quiescent limit (i.e., when the velocity field reduces to
zero) the following equilibrium expression for the structure
factor emerges:

1
S 2(x,—x+kg)’

which has the correct Ornstein-Zernike form [6].

Lai and Fuller [27] have used this approach to simulate
the time evolution of S, subject to simple shear flow. They
found that the structure factor elongates perpendicular to the
direction of flow (i.e., the domains in real space elongate in
the direction of fluid flow). However, we consider contribu-

)

Sq
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tions from all spatial gradients in the velocity field. We can,
therefore, capture the time evolution of S in a system where
the velocity fields not only vary with time, but are also non-
trivial.

We rewrite the above expression in dimensionless units
and, for computational efficiency, consider variations in the
structure factor rather than the structure factor directly. In
converting the above equations into dimensionless units we
follow Lai and Fuller [27]. The dimensionless scattering fac-
tor is defined as k= &q, where £ is the correlation length of
the fluctuations. This correlation length is given by ¢
= \|Mt, which relates the length and time scales; note that
the mobility coefficient is given by M=&/tz. The dimen-
sionless time is defined as 7=t/ty where t is the diffusive
relaxation time. The interfacial thickness is taken as €
= \k/(2x,~2x), and L= €*/ £ is the square of the ratio be-
tween the interfacial width and the correlation length.

We have found it computationally more efficient to evolve
the variations in the structure factor (from the quiescent val-
ues) rather than evolve the structure factor directly. The
variation in the structure factor, ASy, can be defined as

1

S =9 AS, =
KR F AR oy — 200 (1 + LK)

+ ASy, (10)

where Sy is the quiescent structure factor (in the absence of
imposed velocity fields). We can now obtain the following
evolution equation:

S, _ | v, 35u0 a_ﬁa_ﬂ]
or  “Lox ok, dy ok, Jz ok,
] 2B, 2,30 ﬂ_vxﬂsko]
" ox ok, dy ok, Iz Ok,
[ .S .Sk v dS
+kz_z ko Uz k0+& k0:|
| ax ok, dy ok,  az ok,
[ Gv, 0AS, v, 9AS, v, JAS,
+k, L—k+——k+——k]
| ax ok, dy ok, 9z ok,
[ v, NS, v, IAS, v, IAS
+k, Pk _z_k_,__x_k}
| dx Ik, dy ok, dz dk,
[ v, 0AS, v, IAS,  dv, aAsk]
+k,| — +— +—
| dx ok, dy Ik, dz ok,
—4(x, = YK*(1 + LK) AS,, (11)

where the derivatives of the velocity field are dimensionless
(with respect to the relaxation time) and are allowed to vary
as a function of time during the simulation. We can, there-
fore, simulate the evolution of the structure factor for a given
element of fluid subject to complex time-dependent spatial
velocity derivatives.

C. Multiscale model

We consider the dynamics of fluid flow through porous
media and, given the complex flow patterns, predict the evo-
lution of the concentration fluctuations. The history of a fluid
element as it travels through the porous media influences the
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structure factor associated with that fluid element. In other
words, in order to obtain the structure factor at a given point
in space we have to consider the pathway traversed by the
fluid element to reach that point. To do this we construct a
streamline following the path of a fluid element as it travels
through the porous media up to the point where we wish to
calculate the structure factor. By considering the velocity
gradients experienced by the fluid element as a function of
time as it traverses the system we can now evolve the struc-
ture factor calculation [Eq. (11)]. We calculate the structure
factor as a function of time for this fluid element and take
into consideration the variations in velocity gradients it ex-
periences along its journey through the porous media.

We simulate the flow through porous media by first cre-
ating the tortuous pathways for fluid flow through the sys-
tem. The LB lattice is 400 X 50 X 50Ax> in size, and periodic
boundary conditions are applied in all directions. This ap-
proach has the benefit of reducing finite-size effects. The
porous media are constructed by randomly placing immov-
able spherical regions of radius 10Ax (allowing spheres to
overlap) until the relative volume of free space, or porosity,
reaches a desired value. The fluid is then forced to move in
the x direction through the application of an external force,
which mimics the application of a pressure gradient. We
evolve the system until the variation in velocities reaches
zero and the flow has reached steady state.

In this study we are not only interested in the flow pro-
files, but also wish to follow fluid elements as they travel
through the system and investigate the effects of spatial
variations in velocity on the polymer blend concentration
fluctuations. To do this we monitor the progress of a fluid
element and evolve its position as a function of the local
velocity multiplied by a small time step. In particular, we
linearly interpolate the velocity of the fluid in between lattice
sites and also the spatial derivatives of the velocity (which
are necessary for evolving the structure factor). We can now
follow a fluid element as it flows through the system. In
particular, we can use the position and velocity of a fluid
element to evolve its position given an increment in time and
obtain a new position. In this manner, we follow the fluid
element as it traverses the porous media and output the spa-
tial derivatives experienced by the fluid element as a function
of time. Therefore, we can obtain the local spatial gradients
of the velocity that act on a fluid particle as a function of
time as it travels through the complex and tortuous system.
The spatial derivatives of the velocity as a function of time
now serves as the input to the Cahn-Hilliard model. The
structure factor of the concentration fluctuations is allowed
to evolve subject to these extensional and shear flows. In
particular, variations in velocity fields are key to describing
the evolution of the polymer blend and we incorporate these
derivatives from the LB model into Eq. (16) above. There-
fore, we can simulate the elongation and rotation of concen-
tration fluctuations in the polymer blend as a consequence of
the complex flow patterns experienced while flowing through
porous media. We now demonstrate this multiscale approach
and present results which correlate the tortuosity of a fluid
channel with the concentration fluctuations of a polymer
blend flowing through this channel.
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FIG. 1. (Color online) The flow field through a system of 80%
porosity. The red spheres represent solid regions, and the black lines
are streamlines through the system. Cones represent the velocity of
the fluid with orientation and size corresponding to the direction
and magnitude of the fluid flow.

III. RESULTS AND DISCUSSION

In this section we present results of fluid flow in porous
media. We then demonstrate how these flow fields can have a
dramatic impact on the evolution of the structure factor of
the polymer blend concentration fluctuations.

The flow field through a system containing a porosity of
0.8 is shown in Fig. 1. The solid spheres are placed at ran-
dom (and allowed to overlap) in the LB lattice until the
amount of space taken up by the particles reaches 20%. The
remaining 80% of the system is fluid (hence, a porosity of
0.8). The solid spheres are depicted and the fluid flow is
illustrated by “streamlines,” pathways along which the fluid
flows through the system. Cones, whose orientation and size
depict the direction and magnitude of the velocity field, are
included along these streamlines. For clarity, we show three
realizations of the computational domain, side by side, re-
flecting the periodicity of the simulations.

The random placements of solid spheres in the channel
results in the fluid having to flow around these obstructions
and the streamlines are, therefore, tortuous. That is, the path
which the fluid travels is increased in distance as it has to
snake its way through the complex and convoluted system.
Another feature of the flow profile is the convergence of fluid
into regions in between solid spheres and the relatively high
velocity fields in these regions.

In Fig. 2 we quantify the tortuosity of systems with po-
rosity ranging from 0.85 to 0.5 (we simulate three different
configurations for each porosity). The tortuosity is defined as
being the ratio between the length of the flow path of a fluid
element through the sample and the length of the system [7].
We take the tortuosity of paths which begin at one end of the
system and travel through to the other end of the system.
Pathways which are completely obstructed by the solid
spheres (i.e., the fluid streamline flows directly into a sphere
or cluster of spheres such that the velocity goes to zero) are
not considered. Figure 2 depicts the cumulative distribution
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FIG. 2. Cumulative distribution function (CDF) of the tortuosity
of systems with varying porosity (ranging from 0.5 to 0.85).

function (CDF [28]) of the tortuosity for systems with differ-
ent porosity (and three independent runs for each porosity
value). As the porosity is reduced and more obstacles are
placed in the fluids path, the average tortuosity of the sys-
tems increases. The average tortuosity increases from
roughly 1.05 to 1.23, as the porosity is reduced from 0.85 to
0.5.

During these simulations the same internal body force
was maintained, which is equivalent to applying a constant
global pressure difference across the systems. Therefore, as
the number of solid spheres is increased (and the porosity
decreases) the overall velocity in the system is reduced. This
is illustrated in Fig. 3 which depicts the CDF of the local
velocity magnitude in systems of varying porosity. Again, we
consider three independent runs for each porosity value. Not
only is the average value of the velocities significantly re-
duced on increasing the number of solid spheres (and, hence,
increasing the area of no flux surfaces in the system), but the
width of the distributions would also appear to be narrower.

The flow field influences the structure factor of the con-
centration fluctuations through spatial velocity derivatives.
We plot the derivatives of the velocity in the flow direction
with respect to perpendicular directions [ §,v, and Sv, in Fig.

y
4(a)] and the flow direction [S,v, in Fig. 4(b)]. In other
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FIG. 3. Cumulative distribution function (CDF) of the local ve-
locity magnitude in systems with varying porosity (ranging from
0.5 to 0.85).

PHYSICAL REVIEW E 74, 041807 (2006)

CDF

CDF

av, (1025

FIG. 4. Cumulative distribution function (CDF) of the local ve-
locity gradients (a) d,v, and 8v,, and (b) S,v,, in systems with
varying porosity (ranging from 0.5 to 0.85).

words, we isolate the shear and extensional components of
the velocity gradients in the flow direction (it should be
noted that the remaining spatial derivatives exhibit similar
trends). We normalize the local velocity in a system (and,
hence, the velocity derivatives) by the average velocity in
that system and, thereby, isolate the effects of tortuosity on
the spatial gradients. In effect, all fluid elements travel on
average at the same speed, but the more tortuous paths take
longer as they travel farther. The CDF’s of the normalized
velocity gradients are obtained from three independent runs
for each porosity. We find that the average velocity gradients
are around zero and the distribution extends farther for sys-
tems with lower porosity. Therefore, the more complex and
tortuous the flow fields, the larger the spatial derivatives of
the velocity fields. We now seek to correlate these deriva-
tives with the evolution of the structure factor of a fluid
element as it traverses the porous media and is subject to
these derivatives.

Figure 5(a) depicts a streamline through a system with
50% porosity. We isolate a single streamline through the sys-
tem and depict the solid regions as semitransparent spheres.
The magnitude of the spatial derivatives of the velocity field
(taken as p;: dv;) is plotted as a function of time in Fig.
5(b). Positions 1-4 marked in Fig. 5(a) are also shown in
Fig. 5(b). As the fluid traverses a tortuous pathway through
the system the fluid element travels at different speeds in
different regions and experiences different velocity gradients.
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FIG. 5. (Color online) Correlation of pathway, velocity deriva-
tives, and structure factor variations. Shown are (a) streamline
through system with 50% porosity (solid regions near to the stream-
line are shown as semitransparent spheres), (b) the magnitude of the
velocity gradients (5p;: dv;) as a function of time, and (c) both the
average deviation in S and aspect ratio as a function of time.
Circles in plot (b) correspond to the numbered position in plot (a).

Areas of twists and turns in the fluid path correspond with
sudden increases in velocity gradients. Furthermore, sudden
increases in velocity gradients are observed when the fluid is
corralled through a narrow region [positions 2 and 3 in Fig.
5(a), for example]. As the fluid is contracted in this region
the fluid element experiences significant extensional flows.
These velocity gradients can now be correlated with their
effects on the structure factor of the concentration fluctua-
tions. As the fluid travels through the porous media we cal-
culate the average deviation of the structure factor from the
quiescent structure factor [ASy averaged over k; see Eq. (15)]
and the aspect ratio of the structure factor. The aspect ratio is
obtained by considering an isosurface around the structure
factor at a value of 75% of the maximum Sy value. We then
determine the points on this isosurface which are closest and
farthest (in k space) from the center. The aspect ratio is sim-
ply defined as the ratio between the farthest distance and the
closest distance. The average deviation of the structure factor

PHYSICAL REVIEW E 74, 041807 (2006)

from its quiescent state and the aspect ratio are both plotted
in Fig. 5(c). These plots should be compared with the plot of
dv;:6v; in Fig. 5(b). The deviation of the structure factor
shows a very close correlation to the magnitude of the ve-
locity derivatives. The positions and magnitude of the peaks
in both plots appear to be very similar. The aspect ratio, on
the other hand, appears to be less correlated with the magni-
tude of the velocity derivatives. In particular, the aspect ratio
exhibits a smoother curve and the peaks are shifted to later
times. In other words, there is a response time, or delay,
between the fluid element experiencing variations in the ve-
locity derivatives and the structure factor becoming de-
formed, or elongated.

To further illustrate the effects of the flow field on the
structure factor we plot the structure factor [at the various
labeled points from Fig. 5(a)] in Fig. 6. The structure factor
is three dimensional and, therefore, for clarity we only
present half of the system. Isosurfaces are depicted at values
of 25% (outer shell), 50% (middle shell), and 75% (inner
shell) of the maximum value of the structure factor. In Fig.
6(a) [point No. 1 along the streamline in Fig. 5(a)] the outer
contour surface appears to be relatively undeformed, while
the inner surfaces would appear to be slightly elongated per-
pendicular to the flow direction (k,). Figures 6(b) and 6(c)
show the fluid as it is contracted and extended flowing
through the narrow channel shown as points 2 and 3 in Fig.
5(a). The surfaces become even more deformed, especially
the isosurface at 75% of the maximum S, value which be-
comes considerably elongated in the k, and k, directions and
appears to be tilted. This means that the concentration fluc-
tuations in real space are elongated in the flow direction. As
the fluid emerges from the cluster of solid spheres, which
contracted and elongated the spatial concentration fluctua-
tions, the velocity gradients subside considerably. At this
point [shown in Fig. 6(d)] the structure factor returns to-
wards its quiescent state and the isosurfaces appear to be
more spherical.

In order to quantify the correlation between the magnitude
of the velocity derivatives [see Fig. 5(b)] and both the devia-
tion of the structure factor and the aspect ratio [see Fig. 5(c)]
we calculate correlation functions. The correlation function
between two discrete data sets x; and y; (which in our case
represent velocity derivatives and either the aspect ratio or
average deviation of the structure factor) can be written in
the form

H_E (-xi - Iu‘x)(yHL - /u'y)
C= - , (12)

where u, and o, are the average and standard deviation of a
discrete time series x;. Here n represents the total number of
discrete values of both x; and y;, and L is included to account
for a discrete time delay. If the two sets x; and y; are perfectly
correlated, then the correlation function would return a value
of 1. Uncorrelated data sets would return a value of zero,
while negatively correlated data [i.e., x;—u,<—(y;—u;)]
would return a value of —1. We shift one of our data sets by
a discrete amount (represented by the discrete quantity L)
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FIG. 6. (Color online) Isosurfaces of the structure factor at the positions numbered from 1 to 4 in Fig. 5(a); in particular, the structure
factors at (a) position 1, (b) position 2, (c) position 3, and (d) position 4 are shown. Isosurfaces are depicted at values of 25% (outer shell),
50% (middle shell), and 75% (inner shell) of the maximum value of the structure factor.

and obtain the correlation function as a function of this shift
in Fig. 7. We show the correlation functions between the
magnitude of the velocity gradients and both the aspect ratio
and deviation of the structure factor for the same system (and
streamline) as depicted in Fig. 5. The aspect ratio is the least
correlated, exhibiting a maximum correlation function of
roughly 0.6, and this occurs after a delay of roughly 2A7. On
the other hand, the average deviation is much more closely
correlated with the magnitude of the velocity derivatives and
exhibits a maximum correlation function of roughly 0.9 after
a much smaller time. Therefore, in this system, the deviation
of the structure factor responds much quicker than the aspect
ratio to variations in the magnitude of the velocity gradients
and the correlation is more pronounced.

We now quantify this correlation for a number of systems
and plot the cumulative distribution functions of the correla-
tion functions for both the average AS) and the aspect ratio
in Fig. 8 (the correlation function is taken to be the maxi-
mum correlation function from plots similar to Fig. 7). The
correlations are performed on streamlines from systems of
various porosity (from 0.5 to 0.85) and over three randomly
chosen streamlines (from independent LB simulations) for
each value of porosity. The correlation functions between the
aspect ratio and the velocity gradients appear to be lower
than the correlation functions between the average ASy and

the velocity gradients. The correlation functions are all posi-
tive which indicates that there is a definite correlation be-
tween the aspect ratio of the structure factor and the magni-
tude of the velocity gradients. All of the correlation functions
between the average AS) and the velocity gradients, how-
ever, are above 0.8 which represents a more significant cor-
relation.

We also consider the response time from the correlation
function (defined as the time taken for the correlation func-
tion to reach a maximum value in plots similar to Fig. 7).
Cumulative distribution functions for the response time as-
sociated with the correlation functions between velocity gra-
dients and both the average AS) and the aspect ratio are
plotted in Fig. 9. Not only is the deviation of the structure
factor from its quiescent state well correlated with the veloc-
ity gradients, but there is also only a small delay between the
fluid experiencing the velocity gradients and variations in the
structure factor occurring. The aspect ratio, on the other
hand, is not as well correlated and experiences a considerable
delay between velocity gradients and elongation of the struc-
ture factor.

When calculating the aspect ratio of the structure factor
(or, rather, the aspect ratio of the isosurface of the structure
factor at 75% its maximum value) we also calculate the di-
rection of this elongation. A histogram depicting the average
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Correlation function

FIG. 7. Correlation functions between the magnitude of the ve-
locity derivatives from the macroscopic fluid dynamics and both the
aspect ratio and deviation of the structure factor of the nanoscale
concentration fluctuations. The correlation function is plotted as a
function of a shift in one of the data sets (see text). The maximum
correlation function is taken to be the correlation function between
the two sets, and the value of L to obtain this maximum value is
taken to be the response time.

angle between this elongation and the flow direction is de-
picted in Fig. 10. In particular, we weight the contributions
from the different angles with respect to the aspect ratio mi-
nus one. That is, if the aspect ratio is 1, then the angle of the
orientation is not important. However, if the aspect ratio is
significantly greater than 1, then the contribution of the angle
to the histogram should reflect this. An angle of zero would
indicate that the structure factor is elongated in ¢, and, there-
fore, the spatial fluctuations are compressed in the x direc-
tion. The statistics indicate that this is unlikely to occur in
these systems. More probable is the angle between the elon-
gation and the flow direction being closer to 90°. The struc-
ture factor is, therefore, more likely to be compressed into a
disk shape which lies in the k,-k, plane or elongated in either
the k, or k, direction. This means that the spatial concentra-
tion fluctuations are elongated more towards the flow direc-
tion. This is similar to what has been observed in fluid sub-

ject to simple shear flow, where the concentration
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FIG. 8. Cumulative distribution function (CDF) of the correla-
tion function of deviations in Sy and aspect ratio with the magnitude
of the velocity gradients.
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FIG. 9. Cumulative distribution function (CDF) of the response
time obtained from the correlation function of deviations in Sy and
aspect ratio with the magnitude of the velocity gradients.

fluctuations are also found to elongate towards the flow di-
rection [22]. In particular, in shear flow the elongation occurs
at an angle which depends on the strength and duration of the
imposed shear flow. Here, however, the flow profile is much
more complex and time dependent and we observe concen-
tration fluctuations elongating either in the flow direction or
at an acute angle with the flow direction.

IV. SUMMARY AND CONCLUSIONS

We have presented a multiscale approach for simulating a
miscible polymer blend flowing through porous media. This
approach links the macroscopic flow field with the micro-
scopic concentration fluctuations in polymer blends. In par-
ticular, we can follow a specific fluid element as it travels
through the porous media and predict the concentration fluc-
tuations in this exact fluid element. We find a close correla-
tion between the tortuous pathways, the velocity gradients in
the fluid, and the deviations of the structure factor from its
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FIG. 10. (Color online) Histogram of the angle between the
location of the farthest point on an isosurface (75% of the maxi-
mum value) of the structure factor and the flow direction. The con-
tributions are weighted according to the aspect ratio minus 1. Sys-
tems with porosity ranging from 0.85 (lowest stacked boxes) to 0.5
(highest stacked boxes) are considered.
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quiescent state. The complex flow through porous media ap-
pears to elongate the spatial domains in the flow direction (or
at an acute angle with the flow direction) rather than in di-
rections perpendicular to the flow direction.

The current investigation has concentrated on miscible
polymer blends; however, immiscible polymer blends are
more common. While phase separation in complex geom-
etries has been simulated, this is usually on the length scale
of the macroscopic geometry. Furthermore, phase-separating
blends subject to shear have been the subject of many inves-
tigations. However, very little work has been conducted on
the effects of more complex flow fields. Future work, there-
fore, will seek to couple the macroscopic flow fields in po-
rous media with the domain elongation and rotation in phase-
separating polymer blends on the microscale.

The analysis of concentration fluctuations in miscible
polymer blends offers a unique opportunity to probe the ther-
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modynamics of polymer blend systems. The elongation of
the structure factor observed in the current study is similar in
many ways to the deformations observed under simple shear
flow. Therefore, a phenomenon similar to shear-induced mix-
ing is likely to occur in polymer blends flowing in porous
media. Through the simulations presented here we have
shown that polymer concentration fluctuations (and, hence,
thermodynamic properties such as the interaction parameter)
can be related to macroscopic flow fields. In other words, by
simply measuring the flow fields in a given system one can
draw significant conclusions about the thermodynamics of
the system. Vice versa, measurements of the concentration
fluctuations in a blend of known thermodynamics can reveal
insights into the tortuosity of the flow field. It is expected
that the insights gained from this work, into the effects of
complex flow on the concentration fluctuations in polymer
blends, will stimulate commensurate experimental studies.
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